Методика преподавания функциональной линии по математическим стандартам

Современная педагогика » Функциональная линия в стандартах школьного образования » Методика преподавания функциональной линии по математическим стандартам

Страница 3

Общее определение понятия функции формулировалось следующим образом: «если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция у=f(х) или множество А отображено на множество В».

То есть после создания теории множеств в понятие функции была включена и идея множества.

В начале XX века возникла новая ветвь математики – функциональный анализ. Функциональный анализ находит применение в математике, физике, экономике.

Остро почувствовалась необходимость расширения понятия функции после выхода в 1930 году книги Поля Дирака «Основы квантовой механики», который ввел «дельта-функцию», выходящую за рамки классического определения функции.

После этого советский ученый Н.М. Гюнтер совместно с другими учеными опубликовал работы, в которых неизвестными являются не функции точки, «функции области», что соответствовало физической сущности явлений. В общем виде понятие обобщенной функции было введено французом Лораном Шварцем.

В результате поисков наиболее правильного и полного отражения в этом понятии сущности совершающихся вокруг нас процессов понятие функции неоднократно подвергалось изменениям и уточнениям.

И как бы далеко ни отходило то или иное обобщение понятия функции, в основе всех замысловатых построений лежала одна и та же мысль о существовании взаимосвязанных величин, знание значения одной из которых позволяет найти значение другой величины.

Обзор развития понятия функции показал, насколько это понятие сложное, широкое, многогранное, что оно заставляло задумываться над собой десятки умов великих ученых - математиков и физиков. И отсюда следует, что к формированию этого понятия в школьном курсе математики требуется найти особый подход, учитывая при этом и историческое прошлое понятия функции.

Функциональная линия в стандартах школьного образования

Как уже говорилось неоднократно в России существуют два стандарта школьного образования: один - БУП 1998 года, другой проект стандарта 2002 года, который в настоящее время находиться на доработке.

В этой части диплома, я хочу просмотреть функциональную линию в стандартах (обязательный минимум содержания образования и требования к функциональной подготовке школьников) и сделать вывод о изменениях произошедших в них.

Рассмотрим стандарт 1998 года, по которому в настоящее время работает большинство школ.

Задачами курса математики на разных ступенях обучения по функциональной линии являются:

· пропедевтика изучения функции;

· изучение свойств и графиков элементарных функций, использование функционально-графических представлений для описания и анализа реальных зависимостей;

· расширение и систематизация общих сведений о функциях, изучение новых классов элементарных функций;

· расширение и совершенствование математического аппарата, сформированного в основной школе (выражения, уравнения, неравенства, вычисления, включающие новые виды функций);

· ознакомление с элементами дифференциального и интегрального исчисления как аппаратом исследования функций, решения прикладных задач;

· расширение и углубление представлений о математике как элементе человеческой культуры, о применении ее в практике, в научном познании (осознание универсальности математических понятий, теорий, методов, иллюстрация их применения в различных областях человеческой деятельности);

· совершенствование интеллектуальных и речевых умений с помощью функциональной линии.

Данные задачи решаются с помощью содержания обучения, функциональная линия развивается по ступеням обучения следующим образом:

1) Начальная школа. Содержание обучения дает возможность осуществить пропедевтику изучения функций при введении буквенных выражений, при рассмотрении зависимости между компонентами арифметических действий, при решении текстовых задач, в которых используются зависимости между различными величинами (например, между скоростью, расстоянием и временем).

2) Основная школа. При обучении учащиеся приобретают систематизированные знания об элементарных функциях и их свойствах, овладевают навыками построения графиков. Основной материал данной линии связан здесь с линейной и квадратичной функциями.

3) Старшая школа. Развитие функциональной линии происходит в нескольких аспектах: рассматриваются новые свойства функций (периодичность, наличие точек максимума или минимума); изучаются новые классы функций - тригонометрические, показательные, логарифмические функции; вводятся понятия производной, первообразной и интеграла, которые находят широкое применение при решении различных задач, связанных с исследованием функций, решением физических задач и т. п.

Страницы: 1 2 3 4 5 6 7


Тонкости педагогики:

Содержание начального образования непрерывного курса информатики
В обучении информатике принято выделять четыре ступени: пропедевтическую (начальный курс), базовую (базовый курс), профильную (профильные курсы), профессиональную (вузовский курс). Основная задача начальной школы — дать основы для получения образования (в общем смысле — научить читать, писать, счит ...

Анализ занятости выпускников детского дома
Проанализировав сведения о занятости выпускников детского дома мы получили следующие данные. Из 39 выпускников 37 человек продолжили обучение: из них 4 человека обучаются (обучались) в высших учебных заведениях, в СУЗах – 3 человека, в ПТУ – 30 человек, обучаются на курсах – 2 человека, 15 человек ...

Реализация языковой компетенции при обучении синтаксическим нормам
Термин «языковая компетенция» был введен Н. Хомским примерно в середине XX в. и семантически противопоставлен термину «использование языка». Различие значений этих терминов раскрывалось как разница между знанием «говорящего-слушающего» о языке и применением языка в практике общения и деятельности ч ...

Разделы сайта

Copyright © 2024 - All Rights Reserved - www.eduinterest.ru