Методика преподавания функциональной линии по математическим стандартам

Современная педагогика » Функциональная линия в стандартах школьного образования » Методика преподавания функциональной линии по математическим стандартам

Страница 1

История функции уходит своими корнями в те далекие времена, когда человек начал понимать, что окружающие его явления взаимосвязаны.

В связи с развитием земледелия, ремесла, скотоводства, обмена увеличилось количество зависимостей., известных людям. Если из одного ведра глины можно было изготовить 5 горшков, то из 3-х ведер можно было изготовить 15 горшков. Тогда людям редко приходилось сталкиваться с более сложными зависимостями. Когда возникли первые цивилизации понадобились писцы, которые вели бы учет налогов, количество- стройматериала, продовольствия.

Достигшие высокого уровня в математике вавилоняне, чтобы облегчить вычисления, составили таблицы обратных значений чисел., квадратов и кубов чисел и даже таблицы для суммы квадратов чисел и их кубов. У вавилонян были и таблицы функций двух переменных, например таблицы сложения и умножения двух чисел.

Древнегреческие математики нашли много различных кривых, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях.

Позже центр научных исследований переместился в арабские страны, где арабские ученые разработали новые тригонометрические таблицы.

Здесь же впервые встречается термин «Применимо ко всем таблицам», то есть речь идет о всевозможных зависимостях между величинами. Этот термин принадлежит хорезмийцу Аль Бируни, жившему в XI веке.

В XIV началось исследование общих зависимостей. Французский ученый Николай Оресм, который выражал интенсивность качеств отрезками, расположив перпендикулярно некоторой прямой, назвал их верхние концы, которые образовали некоторую линию, «линией верхнего края». В этой линии можно узнать график соответствующей функциональной зависимости. Чтобы развить идеи Оресма, нужно бьло уметь выражать зависимости не только графически, но и с помощью формул. Но буквенная алгебра была создана лишь в XVI веке. Только тогда удалось сделать следующий шаг в развитии понятия функции.

В XVI веке произошли глубочайшие изменения в жизни людей и их мировоззрении. Астрономия начала приносить новые сведения о мире. Основной задачей науки стало открытие законов мироздания, описания их в терминах математики, имевшей дело на тот момент только с постоянными объектами. Чтобы создать математический аппарат для изучения движений, понадобилось понятие переменной величины. Это понятие было введено французским философом и математиком Рене Декартом. Он ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему. Зависимости между величинами стали выражаться как зависимости между числами. Это была неявно выраженная идея числовой функции числового аргумента.

При записи зависимостей между величинами Декарт стад применять буквы. Отношения между известными и неизвестными величинами Декарт выражал в виде уравнений, которые начал изображать геометрически.

К началу XVII века были знакомы уже такие кривые как эллипс, гипербола, парабола и другие. Но не было еще общего метода изучения линий. Открытия Декарта дали возможность изучения и получения новых кривых.

Вообще в течение XVII века было открыто очень много кривых, и в связи с этим понадобились общие понятия, которые позволили бы их изучать.

Четкого понятия функции в XVII веке еще не было, однако путь к первому такому определению проложил Декарт. Понятие функции у него было изложено на языке геометрии, так как запас функций в то время был очень узок. Для создания единого подхода в различных случаях зависимости величин друг от друга понадобилось новое, более общее понятие.

Часто бывает так, что в науке ученые долгое время применяют некоторое понятие в неявном виде. Оно встречается под разными именами, так как нет общего названия. И когда это понятие получает имя, все замечают, что давно работали с ним. Примерно такая ситуация и сложилась с понятием функции.

Слово «функциям (от латинского function - совершение, выполнение) начал употреблять знаменитый математик Г. Лейбниц с 1673 года в смысле роли, то есть величины, выполняющей ту или иную функцию. В начале понятие функции не было свободно от геометрической формы. Как термин выражение «функция от х» стало употребляться Г. Лейбницем и И. Бернулли начиная с 1698 года. Лейбниц ввел также термины «переменная» и «константа» (постоянная). Явное определение функции, свободное от геометрического языка, было дано в 1718 году учеником Лейбница, швейцарским математиком Иоганном Бернулли. «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной ветчины и постоянных». Это определение опиралось не только на работы Лейбница, но и на труды Исаака Ньютона, который исследовал большое количество самых разных функциональных зависимостей.

Страницы: 1 2 3 4 5 6


Тонкости педагогики:

Совместная работа над презентациями через Интернет
Microsoft PowerPoint 2002 запоминает все изменения и дополнения, которые вносятся каждым участником рабочей группы, занимающейся созданием презентации. При отправке презентации на проверку (меню «Файл», команда «Отправить»), автоматически включаются соответствующие средства рецензирования. Кроме то ...

Анализ результатов констатирующего эксперимента
Таблица 1 Результаты выполнения детьми экспериментальной и контрольной групп заданий на исследование состояния словаря. № Параметры исследования Среднее количество баллов ЭГ КГ Исследования пассивного номинативного словаря 4 4,9 Исследования пассивного атрибутивного словаря 3,1 4,7 Исследования пас ...

Межпредметные связи и их роль в формировании связной речи младшего школьника
Одним из важнейших критериев обучения русскому языку наряду с формированием нравственных, эстетических, социально значимых качеств личности школьника является развитие ученика как языковой личности, полноценно владеющей речью во всех ее формах (аудирование, чтение, говорение и письмо). Обучение рус ...

Разделы сайта

Copyright © 2024 - All Rights Reserved - www.eduinterest.ru