История функции уходит своими корнями в те далекие времена, когда человек начал понимать, что окружающие его явления взаимосвязаны.
В связи с развитием земледелия, ремесла, скотоводства, обмена увеличилось количество зависимостей., известных людям. Если из одного ведра глины можно было изготовить 5 горшков, то из 3-х ведер можно было изготовить 15 горшков. Тогда людям редко приходилось сталкиваться с более сложными зависимостями. Когда возникли первые цивилизации понадобились писцы, которые вели бы учет налогов, количество- стройматериала, продовольствия.
Достигшие высокого уровня в математике вавилоняне, чтобы облегчить вычисления, составили таблицы обратных значений чисел., квадратов и кубов чисел и даже таблицы для суммы квадратов чисел и их кубов. У вавилонян были и таблицы функций двух переменных, например таблицы сложения и умножения двух чисел.
Древнегреческие математики нашли много различных кривых, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях.
Позже центр научных исследований переместился в арабские страны, где арабские ученые разработали новые тригонометрические таблицы.
Здесь же впервые встречается термин «Применимо ко всем таблицам», то есть речь идет о всевозможных зависимостях между величинами. Этот термин принадлежит хорезмийцу Аль Бируни, жившему в XI веке.
В XIV началось исследование общих зависимостей. Французский ученый Николай Оресм, который выражал интенсивность качеств отрезками, расположив перпендикулярно некоторой прямой, назвал их верхние концы, которые образовали некоторую линию, «линией верхнего края». В этой линии можно узнать график соответствующей функциональной зависимости. Чтобы развить идеи Оресма, нужно бьло уметь выражать зависимости не только графически, но и с помощью формул. Но буквенная алгебра была создана лишь в XVI веке. Только тогда удалось сделать следующий шаг в развитии понятия функции.
В XVI веке произошли глубочайшие изменения в жизни людей и их мировоззрении. Астрономия начала приносить новые сведения о мире. Основной задачей науки стало открытие законов мироздания, описания их в терминах математики, имевшей дело на тот момент только с постоянными объектами. Чтобы создать математический аппарат для изучения движений, понадобилось понятие переменной величины. Это понятие было введено французским философом и математиком Рене Декартом. Он ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему. Зависимости между величинами стали выражаться как зависимости между числами. Это была неявно выраженная идея числовой функции числового аргумента.
При записи зависимостей между величинами Декарт стад применять буквы. Отношения между известными и неизвестными величинами Декарт выражал в виде уравнений, которые начал изображать геометрически.
К началу XVII века были знакомы уже такие кривые как эллипс, гипербола, парабола и другие. Но не было еще общего метода изучения линий. Открытия Декарта дали возможность изучения и получения новых кривых.
Вообще в течение XVII века было открыто очень много кривых, и в связи с этим понадобились общие понятия, которые позволили бы их изучать.
Четкого понятия функции в XVII веке еще не было, однако путь к первому такому определению проложил Декарт. Понятие функции у него было изложено на языке геометрии, так как запас функций в то время был очень узок. Для создания единого подхода в различных случаях зависимости величин друг от друга понадобилось новое, более общее понятие.
Часто бывает так, что в науке ученые долгое время применяют некоторое понятие в неявном виде. Оно встречается под разными именами, так как нет общего названия. И когда это понятие получает имя, все замечают, что давно работали с ним. Примерно такая ситуация и сложилась с понятием функции.
Слово «функциям (от латинского function - совершение, выполнение) начал употреблять знаменитый математик Г. Лейбниц с 1673 года в смысле роли, то есть величины, выполняющей ту или иную функцию. В начале понятие функции не было свободно от геометрической формы. Как термин выражение «функция от х» стало употребляться Г. Лейбницем и И. Бернулли начиная с 1698 года. Лейбниц ввел также термины «переменная» и «константа» (постоянная). Явное определение функции, свободное от геометрического языка, было дано в 1718 году учеником Лейбница, швейцарским математиком Иоганном Бернулли. «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной ветчины и постоянных». Это определение опиралось не только на работы Лейбница, но и на труды Исаака Ньютона, который исследовал большое количество самых разных функциональных зависимостей.
Тонкости педагогики:
Особенности социально-педагогической работы с семьями, имеющими
религиозно-сектантскую направленность
Религия не может существовать без своих организаций, которые выполняют определенные функции [47]. Первая из них состоит не только в легитимизации социальной системы, но и в освящении и пропаганде соответствующих ценностных ориентаций, в создании и развитии определенных символических структур значен ...
Практическая работа
социального педагога по профилактике подростковой наркомании в условиях
общеобразовательной школы
Профилактическая работа была организованна в ходе прохождения государственной практики в группе учащихся МОБУ СОШ с. Уткалево Белорецкого района Республики Башкортостан с 26 января по 14 февраля 2009 года. Основные методики, используемые в данной работе по профилактике подростковой наркоманиии, явл ...
Роль и место социально-гуманитарных дисциплин в образовательном процессе
Анализ возможностей гуманитарных дисциплин в формировании социально-личностных компетенций студентов, представленный в специальной литературе [11; 12; 13], можно свести к следующим позициям: 1. Гуманитарные дисциплины оказывают важное влияние на формирование ценностных ориентаций студентов, их проф ...