Функциональная линия является одной из самых важных линий в курсе математики. Без правильного введения понятия функции невозможен дальнейший процесс изучения данной линии. Поэтому далее в своей работе я буду рассматривать тему «Введение понятия функции» более подробно.
В школьных учебниках существовали и существуют различные подходы к определению понятия функции и ее введению и дальнейшему формированию, которые в той или иной мере являлись отражением исторического пути становления этого понятия, как зависимой переменной, как правила или закона, как выражения, и как соответствия или отношения.
Что жезаставляет методистов искать новые пути введения понятия функции? На поиски их толкает неудовлетворенность результатами изучения функции учащимися: слабая ориентация в системе координат, отсутствие у некоторых учащихся представления о графиках основных изучаемых функций, некоторые не видят связи между изучаемыми функциями и решением уравнений и неравенств, не умеют читать графики функций и, наконец, большинство просто не понимают определения понятия функции и бездумно его заучивают.
В немалой степени такое состояние функциональной подготовки учащихся было вызвано теми подходами к определению понятия функции, которые были приняты в школьных учебниках, отсутствием четкости в этих определениях, не позволившим точно, однозначно и доступно трактовать рассматриваемое понятие, несвоевременностью его введения.
Рассмотрим примеры определений, которые были даны в учебнике Киселева А.П. и учебнике Кочетковой Е.С.:
«Та из двух связанных между собой переменных величин, которой можно придавать произвольные значения, называется независимой переменной или аргументом. Та переменная величина, числовые значения которой изменяются в зависимости от числовых значений другой, называется зависимой переменной или функцией этой другой переменной величины».
«Если каждому значению одной переменной величины х каким-либо образом поставлено в соответствие вполне определенное значение другой величины у, то говорят, что задана функция. Величину у при этом называют зависимой переменной величиной или функцией, а величину х - независимой переменной величиной или аргументом»
Недостатки первого определения: расплывчатость основного опорного понятия переменной величины, несоответствие объему этого понятия, т.е. отсутствие однозначности.
Недостатки второго определения: отсутствие четкости, двусмысленность, из этого определения неясно, что же такое функция; соответствие между переменными величинами х и у, способ, которым задается соответствие или переменная величина? Основным опорным понятием в этом определении, так же как и в первом, является понятие переменной величины, смысл которого остается нераскрытым.
Обсуждая методические подходы к определению понятия функции. АЯ. Хинчин говорил, что в понятии функции «как в зародыше уже заложена вся идея овладения явлениями природы и процессами техники с помощью математического аппарата. Вот почему мы должны со всей беспощадностью требовать от этого определения полной, безукоризненной ясности: ни одно слово в нем не должно вызывать и тени сомнения, малейшая двусмысленность здесь грозит сделать все величественное здание, которое строит наука на базе этого основного понятия, несовершенным, требующего капитальной перестройки».
Вводятся понятия функции и ее графика в 7 классе. Введение начинается с рассмотрения кокретных задач (об объеме прямоугольного параллепипеда и высоте прямоуголька при данной площади и ширине). Далее дается точное определение понятия функции и ее графика, что само по себе является преждевременным и учащиеся еще не могут полностью понять глубину этих важных понятий.
Рассматривается функция y=kx (опять от кокретных задач), дается ее определение через понятие пропорциональности, определение графика, построение графика. Линейная функция, ее определение и график. Линейное уравнение с двумя переменными и его график (не объясняется связь между линейными уравнениями с двумя переменными и линейными функциями).
Тонкости педагогики:
Игровая среда групп раннего развития
Игрушки и детская игра тесно связаны между собой. Игрушка способствует появлению того или иного вида игры, и сама игра, в свою очередь, развиваясь, требует все новых игрушек. Игрушка должна быть эстетичной и гуманистичной, безопасной и экологичной, должна соответствовать возрастным особенностям и р ...
Проведение опытно-экспериментальной части исследования
Для второго этапа опытно-экспериментальной базой исследования послужила гимназия № 22.г.Майкопа. В нем участвовал 3 «а» класс, опять же первая группа, состоящая из 10 человек. Эксперимент проходил в конце года, когда учащиеся в течение года изучали компьютер. Цель: с помощью компьютера выявить степ ...
Модели органических целостностей
На наш взгляд, обозначенная проблема моделирования органических целостностей, то есть действительно системного мышления, решается в эпистемологическом подходе философа и антрополога Грегори Бейтсона, основанного им на идеях кибернетики Норберта Винера. Этот подход, так же как СМД-подход, представля ...