Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Современная педагогика » Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа » Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Страница 6

6) Периодичность.

Изучению этого свойства необходимо уделить особое внимание, так как учащиеся впервые сталкиваются с периодическими функциями. Для отработки понятия периодичности функции целесообразно использовать следующие упражнения.

1. На рисунке изображена часть графика периодической функции на отрезке [-2;2], длина которого равна периоду функции. Постройте график функции на отрезках [-6;-2], [2;3].

2. Постройте график периодической функции y=f(x), с периодом равным 2, если известно, что f(x)=х2/2 на отрезке [-1;1].

3. Является ли число 16p периодом функции y=sin x? А ее основным периодом?

4. Найти основные периоды функций y=sin(6x), y=соs(x/2), y=sin(кx).

5. Докажите, что если функция y=f(x) является периодической, то и y=k*f(x)+b тоже периодическая.

6. Пусть функция f периодическая, Т1 и Т2 – ее периоды. Докажите, что любое число вида nТ1 +mТ2, где n,mÎN, также является периодом функции f.

7. Докажите, что функции f(x) = sin x2 и cos (x)*cos Öx не являются периодическими.

8. Докажите, что возрастающая функция не может быть периодической. И т.п.

Следует обратить внимание учащихся на тот факт, что периодическая функция имеет бесконечное множество периодов, среди которых стараются выделить, если это возможно, наименьший положительный период, который называют основным.

После этого все свойства тригонометрических функций желательно проиллюстрировать на графике и свести в одну таблицу.

Свойства

у=sin(x)

у=cos(x)

у=tg(x)

y=ctg(x)

Область определения

Область значений

Нули функции

Для дальнейшей отработки навыков по исследованию тригонометрических функций и построению их графиков используют гармонические колебания, которые имеют вид y =Asin(wt+a) и y =Acos(wt+a). Основной целью введения гармонических колебаний является наглядная демонстрация того, как изменяются свойства функций в зависимости от значения коэффициентов A,w и a. При этом целесообразно использовать задания вида:

1.По графику функций определите задающую ее формулу:

Рис.6

2. Какими свойствами обладают данные функции на отрезке [-p/2; p/2], а на отрезке [0; p]?

Возрастает

Имеет ровно один корень

Пробегает всё множество значений

Убывает

Не меняет знак

Y=cos(x)

Y=cos(x/2)

Y=3cos(2x)

Y=cos(x+p/4)

Y=2cos(p/2-x)

Какими свойствами обладают данные функции на данных промежутках?

[-p/2; p/2]

[0; p]

[-2p;0]

[-3 p/2;- p]

[-p; p]

Y=cos(x)

Y=cos(2x)

Y=2cos(x/2)

Y=cos(x+p/2)

Y=3cos(p/4-x)

Страницы: 1 2 3 4 5 6 7


Тонкости педагогики:

Фрагменты конспектов уроков – примеры применения интерактивной доски Smart Board при изучении математики в 5–6 классах c учетом принципа наглядности
Урок – это такая форма организации педагогического процесса, при которой педагог в течение точно установленного времени руководит познавательной коллективной и иной деятельностью постоянной группы учащихся (класса) с учетом особенностей каждого из них, используя виды, средства и методы работы, созд ...

Технологии профилактики наркомании
Для профилактики наркомании в образовательной среде используются разнообразные формы и методы. Волонтерское движение. Достаточно специфическая и «интеллигентная» технология. Может принимать форму общественных советов, уличных комитетов, школьных организаций. Коротко охарактеризовать ее суть можно в ...

Нравственно-эмоциональные стороны проявления гиперактивности дошкольников
Несмотря на различные точки зрения, практически все ученые сходятся в том, что эмоции отражают состояние, процесс и результат удовлетворения потребностей человека. По эмоциям можно определенно судить, что в данный момент волнует индивида, т.е. какие потребности и интересы являются для него актуальн ...

Разделы сайта

Copyright © 2025 - All Rights Reserved - www.eduinterest.ru