6) Периодичность.
Изучению этого свойства необходимо уделить особое внимание, так как учащиеся впервые сталкиваются с периодическими функциями. Для отработки понятия периодичности функции целесообразно использовать следующие упражнения.
1. На рисунке изображена часть графика периодической функции на отрезке [-2;2], длина которого равна периоду функции. Постройте график функции на отрезках [-6;-2], [2;3].
2. Постройте график периодической функции y=f(x), с периодом равным 2, если известно, что f(x)=х2/2 на отрезке [-1;1].
3. Является ли число 16p периодом функции y=sin x? А ее основным периодом?
4. Найти основные периоды функций y=sin(6x), y=соs(x/2), y=sin(кx).
5. Докажите, что если функция y=f(x) является периодической, то и y=k*f(x)+b тоже периодическая.
6. Пусть функция f периодическая, Т1 и Т2 – ее периоды. Докажите, что любое число вида nТ1 +mТ2, где n,mÎN, также является периодом функции f.
7. Докажите, что функции f(x) = sin x2 и cos (x)*cos Öx не являются периодическими.
8. Докажите, что возрастающая функция не может быть периодической. И т.п.
Следует обратить внимание учащихся на тот факт, что периодическая функция имеет бесконечное множество периодов, среди которых стараются выделить, если это возможно, наименьший положительный период, который называют основным.
После этого все свойства тригонометрических функций желательно проиллюстрировать на графике и свести в одну таблицу.
Свойства |
у=sin(x) |
у=cos(x) |
у=tg(x) |
y=ctg(x) |
Область определения | ||||
Область значений | ||||
Нули функции | ||||
… |
Для дальнейшей отработки навыков по исследованию тригонометрических функций и построению их графиков используют гармонические колебания, которые имеют вид y =Asin(wt+a) и y =Acos(wt+a). Основной целью введения гармонических колебаний является наглядная демонстрация того, как изменяются свойства функций в зависимости от значения коэффициентов A,w и a. При этом целесообразно использовать задания вида:
1.По графику функций определите задающую ее формулу:
Рис.6
2. Какими свойствами обладают данные функции на отрезке [-p/2; p/2], а на отрезке [0; p]?
Возрастает |
Имеет ровно один корень |
Пробегает всё множество значений |
Убывает |
Не меняет знак | |
Y=cos(x) | |||||
Y=cos(x/2) | |||||
Y=3cos(2x) | |||||
Y=cos(x+p/4) | |||||
Y=2cos(p/2-x) |
Какими свойствами обладают данные функции на данных промежутках?
[-p/2; p/2] |
[0; p] |
[-2p;0] |
[-3 p/2;- p] |
[-p; p] | |
Y=cos(x) | |||||
Y=cos(2x) | |||||
Y=2cos(x/2) | |||||
Y=cos(x+p/2) | |||||
Y=3cos(p/4-x) |
Тонкости педагогики:
Разработка задач для проверки знаний и умений учеников в соответствии с
требованиями проекта стандарта 2010 года по теме «Функции»
При первом появление понятия функции следует отказаться от четкой формулировки определения. В ныне действующих учебниках нет единства в вопросе определения функции. Поэтому целесообразно вводить определение понятия в 9 классе, а до этого строить теорию при отсутствии определения. Определение функци ...
Особенности социально-педагогической работы с семьями, имеющими
религиозно-сектантскую направленность
Религия не может существовать без своих организаций, которые выполняют определенные функции [47]. Первая из них состоит не только в легитимизации социальной системы, но и в освящении и пропаганде соответствующих ценностных ориентаций, в создании и развитии определенных символических структур значен ...
Проблемы введения нового стандарта
Разработка стандарта затрагивает интересы множества социальных групп: учителей, чиновников, министерства образования, представителей высших учебных заведений и академических институтов. Учеников и их родителей. Их интересы часто противоречат друг другу. Например, преподаватели вузов хотят, чтобы шк ...