Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Современная педагогика » Методика преподавания темы "Тригонометрические функции" в курсе алгебры и начал анализа » Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа

Страница 6

6) Периодичность.

Изучению этого свойства необходимо уделить особое внимание, так как учащиеся впервые сталкиваются с периодическими функциями. Для отработки понятия периодичности функции целесообразно использовать следующие упражнения.

1. На рисунке изображена часть графика периодической функции на отрезке [-2;2], длина которого равна периоду функции. Постройте график функции на отрезках [-6;-2], [2;3].

2. Постройте график периодической функции y=f(x), с периодом равным 2, если известно, что f(x)=х2/2 на отрезке [-1;1].

3. Является ли число 16p периодом функции y=sin x? А ее основным периодом?

4. Найти основные периоды функций y=sin(6x), y=соs(x/2), y=sin(кx).

5. Докажите, что если функция y=f(x) является периодической, то и y=k*f(x)+b тоже периодическая.

6. Пусть функция f периодическая, Т1 и Т2 – ее периоды. Докажите, что любое число вида nТ1 +mТ2, где n,mÎN, также является периодом функции f.

7. Докажите, что функции f(x) = sin x2 и cos (x)*cos Öx не являются периодическими.

8. Докажите, что возрастающая функция не может быть периодической. И т.п.

Следует обратить внимание учащихся на тот факт, что периодическая функция имеет бесконечное множество периодов, среди которых стараются выделить, если это возможно, наименьший положительный период, который называют основным.

После этого все свойства тригонометрических функций желательно проиллюстрировать на графике и свести в одну таблицу.

Свойства

у=sin(x)

у=cos(x)

у=tg(x)

y=ctg(x)

Область определения

Область значений

Нули функции

Для дальнейшей отработки навыков по исследованию тригонометрических функций и построению их графиков используют гармонические колебания, которые имеют вид y =Asin(wt+a) и y =Acos(wt+a). Основной целью введения гармонических колебаний является наглядная демонстрация того, как изменяются свойства функций в зависимости от значения коэффициентов A,w и a. При этом целесообразно использовать задания вида:

1.По графику функций определите задающую ее формулу:

Рис.6

2. Какими свойствами обладают данные функции на отрезке [-p/2; p/2], а на отрезке [0; p]?

Возрастает

Имеет ровно один корень

Пробегает всё множество значений

Убывает

Не меняет знак

Y=cos(x)

Y=cos(x/2)

Y=3cos(2x)

Y=cos(x+p/4)

Y=2cos(p/2-x)

Какими свойствами обладают данные функции на данных промежутках?

[-p/2; p/2]

[0; p]

[-2p;0]

[-3 p/2;- p]

[-p; p]

Y=cos(x)

Y=cos(2x)

Y=2cos(x/2)

Y=cos(x+p/2)

Y=3cos(p/4-x)

Страницы: 1 2 3 4 5 6 7


Тонкости педагогики:

Результаты опытно-экспериментального исследования
После проведенных занятий нами проведена повторная диагностика социальной адаптированности подростков. Результаты представлены в виде таблицы 2. Результаты представлены в виде сводной таблицы 2. Таблица 2. Результаты диагностики социально-психологической адаптации К. Роджерса и Р. Даймонда Уровни А ...

Педагогические рекомендации для родителей, воспитывающих ребёнка с проблемами интеллектуального развития
Более половины семей отрицательно влияют на развитие умственно отсталого ребёнка, и лишь около 40 % семей оказывают положительное воздействие. При этом следует отметить, что даже в тех семьях, где отношение к ребёнку правильное, родители в большинстве случаев действуют, руководствуясь лишь собствен ...

Результаты экспериментальной проверки оптимальной модели обучения учащихся VII-VIII классов в процессе работы на токарно-винторезном станке
Экспериментальной базой квалификационной работы по проверке спроектированной модели процесса обучения учащихся VII-VIII классов работе на токарно-винторезном станке является СОШ №5 п. Октябрьского Красноармейского района Краснодарского края. В педагогическом эксперименте принимали участие д.п.н., п ...

Разделы сайта

Copyright © 2025 - All Rights Reserved - www.eduinterest.ru