Больше всего проблем, связанных с неоднозначностью соответствия между точками и числами на окружности возникает при решении задач вида: «Найти на числовой окружности точки с ординатой (абсциссой) большей Ö3/2 и записать, каким числам они соответствуют».
Такие неравенства, характеризующие дугу, рекомендуется на начальном этапе составлять в два шага. На первом шаге составить так называемое «ядро» аналитической записи p/3 < t < 2p/3, и только на втором составить общую запись p/3+2pk < t < 2p/3+2pk, где к Î Z.
По этому поводу осмелюсь не согласиться с статьей [10], в который автор пишет, что уточнение «где к Î Z» можно опускать, записывая его только в парадных случаях – на контрольных или экзаменационных работах. В большинстве случаев это действительно можно делать совершенно безболезненно, но как быть, если при отборе корней уравнения или неравенства, или при наложении определенных ограничений на функцию, параметр к сможет принимать не все а, например, только положительные или только четные значения?
Учащиеся, привыкшие писать +2pk, не задумываясь над тем, какие значения может принимать параметр к, и в этом случае напишут +2pk, что автоматически сделает их решение неверным.
Это приведет и к недопониманию того факта, что, например, множества «4pk, где к Î Z» и «2pk, где к Î 2Z» совпадают. Это, в свою очередь, может породить затруднения при рассмотрении функций с периодом, равным 4p. А ведь таким функциям уделяется немало времени при изучении темы «Тригонометрические функции».
Таким образом, нельзя оставлять недоработанными никакие, даже самые маленькие детали, ведь незначительные с виду недоработки, возникающие при изучении числовой окружности, в процессе изучения самих тригонометрических функций могут стать причиной возникновения больших пробелов в знаниях.
Теперь, когда мы научились работать с числовой окружностью как самостоятельным объектом, можно приступать к введению самих тригонометрических функций.
Не стоит забывать, что определения тригонометрических функций с помощью числовой окружности плохо укладываются в сознании ребят по одной простой причине: на первом этапе определения были даны в геометрической трактовке – как отношения сторон прямоугольного треугольника.
Из психологии известно: «если какое-нибудь важное понятие вводится в первый раз, то ассоциации, сопутствующие ему, врезаются в сознание учащегося чрезвычайно прочно. Последующие впечатления бывают слабее и не могут стереть того обличия, в котором это понятие явилось впервые». [5]
Несмотря на то, что мы уже использовали окружность для введения «новых» определений синуса и косинуса на этапе расширения множества значений, принимаемых углом необходимо еще раз провести взаимосвязь между прямоугольным треугольником и числовой окружностью.
Напомним, что в школьных учебниках этому факту почему-то не уделяется должного внимания (см. главу «Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках»), поэтому учителю стоит обратить внимание на то, чтобы при введении тригонометрических функций на этом этапе были озвучены следующие моменты.
Рассмотрим числовую окружность единичного радиуса, расположенную в прямоугольно декартовых координатах. Рис.1
В положительном направлении от оси ОХ отложим угол a такой, что 0 < a < 900. Обозначим полученную на окружности точку как Рa. Опустим из точки Рa перпендикуляр на ось ОХ, получим точку М. Рассмотрим получившийся прямоугольный треугольник ОМРa. Sina по определению равен отношению МРa/ОРa, но радиус окружности ОРa равен единице, следовательно, Sina = МРa. Аналогичным образом, cosa = ОМ. Заметим, что длина ОМ - это абсцисса точки Рa в прямоугольно-декартовой системе координат, а длина МРa - ее ордината. Таким образом, синус и косинус угла a определяются через ординату и абсциссу точки Рa, что является более удобным при работе в прямоугольно-декартовой системе координат.
Работая с числовой окружностью, мы уже усвоили тот факт, что так как длина дуги единичной окружности легко выражается через центральный угол, на нее опирающийся, то точку Рa, можно построить и другим способом - откладывая дугу заданной длины. А так как длина дуги – всегда действительное число, значит, от тригонометрических функций углового аргумента легко можно перейти к тригонометрическим функциям числового аргумента.
Сейчас вернемся к наложенным на угол a ограничениям. Угол a принадлежит промежутку от 00 до 900, а значит и длина дуги лежит между нулем и p/2. Используя все ту же геометрическую интерпретацию, легко показать, что эти определения можно распространить и на любые углы и числа.
Понятия тангенса и котангенса можно вводить двояко: как отношение синуса к косинусу (косинуса к синусу) и как ординату (абсциссу) точки пересечения касательной к окружности в точке (1;0) ((0;1)) и прямой ОРa.
Рис.2
Тонкости педагогики:
Диагностика воспитания детей в опекунских семьях с религиозно-сектантскими
установками
1. Опросник "Отношение приемных родителей к субъектам педагогической деятельности" (Е. Клепцова). На вопросы родители-опекуны отвечали вместе. Результаты опросника мы оформили в таблице 1. Таблица 1 Семья опекунов Средний балл 1. Семья Соболевых 13 2. Семья Корзун 10 3. Семья Золотаревых ...
Образовательная политика правительства в первой половине XIX
в. и создание историко-филологических факультетов в российских университетах
Начало XIX в. было ознаменовано крупными преобразованиями во многих сферах жизни российского общества, в том числе, и в области образования. К началу нового столетия государство еще не успело создать особые органы по управлению системой народного образования. В 1802 г. была проведена министерская р ...
Содержание коррекционно-педагогической работы по изучению и устранению
проблем формирования игровой деятельности
В целях всестороннего и целостного изучения детей учителя и воспитатели тщательно изучают анамнестические данные, документацию, представленную на ребенка, проводят его медицинское, психолого-педагогическое и логопедическое обследование. Одним из методов обследования является сбор анамнестических св ...