В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Со временем в нее начали вкрапляться некоторые аналитические моменты. В первой половине 18-го века произошел резкий перелом, после чего тригонометрия приняла новое направление и сместилась в сторону математического анализа. Именно в это время тригонометрические зависимости стали рассматриваться как функции. Это имеет не только математико-исторический, но и методико-педагогический интерес.
В настоящее время изучению тригонометрических функций именно как функций числового аргумента уделяется большое внимание в школьном курсе алгебры и начал анализа. Существует несколько различных подходов к преподаванию данной темы в школьном курсе, и учитель, особенно начинающий, легко может запутаться в том, какой подход является наиболее подходящим. А ведь тригонометрические функции представляют собой наиболее удобное и наглядное средство для изучения всех свойств функций (до применения производной), а в особенности такого свойства многих природных процессов как периодичность. Поэтому их изучению следует уделить пристальное внимание. Все выше сказанное и обуславливает актуальность выбора темы для данной исследовательской работы.
Кроме того, большие трудности при изучении темы «Тригонометрические функции» в школьном курсе возникают из-за несоответствия между достаточно большим объемом содержания и относительно небольшим количеством часов, выделенным на изучение данной темы. Таким образом, проблема этой исследовательской работы состоит в необходимости устранения этого несоответствия за счет тщательного отбора содержания и разработки эффективных методов изложения данного материала. Объектом исследования является процесс изучения функциональной линии в курсе старшей школы. Предмет исследования – методика изучения тригонометрических функций в курсе алгебры и начала анализа в 10-11 классе.
Таким образом, основной целью написания данной квалификационной работы является разработка общих методических положений, на которые нужно обратить внимание при изложении темы: «Тригонометрические функции» в курсе алгебры и математического анализа.
Гипотеза: изучение тригонометрических функций будет более эффективным, в том случае когда:
перед введением тригонометрических функций проведена достаточно широкая пропедевтическая работа с числовой окружностью;
числовая окружность рассматривается не только как самостоятельный объект, но и как элемент декартовой системы координат;
построение графиков осуществляется после исследования свойств тригонометрических функций, исходя из анализа поведения функции на числовой окружности;
каждое свойство функций четко обосновано и все они сведены в систему.
Для решения проблемы исследования, проверки достоверности гипотезы и достижения цели реализуются следующие задачи:
исследование уже имеющейся научно-методической литературы по этой теме;
проведение логико-дидактического анализа изложения этой темы в современных учебных пособиях;
обобщение и систематизация полученных сведений;
экспериментальная проверка эффективности использования разработанной методики.
Для достижения целей работы, проверки гипотезы и решения вышепоставленных задач были использованы следующие методы:
изучение программ, учебных пособий, методических материалов, касающихся тригонометрических функций;
сопоставительный анализ школьных учебников различных авторов;
опытное преподавание;
наблюдение за учащимися во время проведения занятий.
Материалы данной исследовательской работы имеют практическую значимость и могут быть использованы преподавателями при изложении темы «Тригонометрические функции» в курсе алгебры и математического анализа в 10-11 классах.
Тонкости педагогики:
Деятельность социального педагога по работе с семьей
Объектом воздействия социального педагога могут быть ребенок в семье, взрослые члены семьи и сама семья, в целом, как коллектив. Деятельность социального педагога с семьей включает три основных составляющих социально-педагогической помощи: образовательную, психологическую и посредническую. Образова ...
Внедрение компьютерных технологий в учебный процесс – история и
современность
Одной из актуальных задач в современных условиях является внедрение информационных технологий на всех уровнях образовательной системы и информационное наполнение компьютерных сетей системы образования. В истории информатизации образования выделяют четыре этапа. Период с начала 50-х и до начала 70-х ...
Педагогические организации
навыков чтения
Чтение - трудный процесс. Зрелый, бывалый читатель не примечает примитивных действий, из которых формируется процесс чтения, потому что данные действия автоматизированы, но 6-летний ребенок, обучающийся читать, ещё не соединяет всех примитивных действий в одно трудное, для него весь элемент предста ...