Различные методические подходы к формированию табличных навыков сложения и вычитания с точки зрения возможностей непроизвольной памяти

Современная педагогика » Возможности использования непроизвольной памяти младших школьников при формировании табличных случаев сложения и вычитания однозначных чисел » Различные методические подходы к формированию табличных навыков сложения и вычитания с точки зрения возможностей непроизвольной памяти

Страница 1

Современный урок математики – это урок с гибкой структурой позволяющий педагогу реагировать на ситуации, возникающие на предыдущих уроках, и даже менять в допустимых пределах план отдельного урока в соответствии с обстоятельствами. Учитель при этом должен быть хорошо знаком с содержанием всего преподаваемого курса, чтобы двигаться в соответствии с ним в направлении, диктуемом ситуацией.

Оптимальная структура урока или группы уроков должна соответствовать принципу построения деятельности в целом. Определив границы имеющихся уже у учащихся знаний, намечаются этапы последующего изучения темы, пути движения к цели. Затем в результате совместной деятельности учителя и детей осуществляем изучение материала. При этом педагог может использовать и совместную деятельность детей в парах, группах; осуществить индивидуальную помощь затрудняющимся. Наблюдая за работой класса, учитель определяет, как организовать впоследствии дифференцированный подход к тем, кто имеет трудности в усвоении, и не затормозить при этом развитие наиболее успевающих учащихся. [29,c.70]

Тема "сложение и вычитание в пределах 20 с переходом через десяток" считается наиболее трудной в курсе математики 2-го класса (1-4), так как переход через десяток представляет собой качественный скачок в вычислительных навыках школьника. Если этот материал усвоен сознательно и прочно, то без труда осваивается и последующий раздел математики – сложение и вычитание с переходом через десяток в пределах 100 (иначе говоря, если ученик знает почему 6+8=14, то ему несложно вычислить далее: 14-8=6; 36+8=44; 44-38=6; 26+38=64; 64-38=26 и т.д.).

Перед изучением важно повторить те примеры, в которых одним из компонентов или результатом действия оказывается круглое число – десяток:

3+7= , 7+10= ,

6+4= , 10+4= ,

10-3= , 14-4= ,

10-2= , 15-10= ,

10+10= , 20-10= .

Для подготовки к изучению темы полезно потренироваться в решении деформированных и неопределенных примеров:

+=10, +10=17,

-2= 10, +4=14,

10-=7, 15-=10,

+=8, 16-=6,

10+=20, 20-=10,

+10=20, -10=10.

Решение этих примеров сводится либо к разложению десятка на два слагаемых, либо к поразрядному разложению двузначного числа.

На этих же операциях, по существу, основывается решение примеров на сложение и вычитание с переходом через десяток. Изучая эту тему, также применяем противопоставление родственных упражнений. [25,c.86]

Процесс преобразования примера на сложение в обратный пример на вычитание не является для них новым. Приведем пример беседы:

Учитель: Сегодня мы будем решать новые трудные задачи. Будьте внимательны. Посмотрите на доску. Там висит наборное полотно. Посчитайте, сколько карманов на нем.

Дети: В верхнем ряду 10 карманов, в нижнем ряду также 10 карманов. Всего 20 карманов.

Учитель: (закрывает правую половину наборного полотна). Посчитайте, сколько теперь карманов осталось в верхнем ряду и в нижнем ряду.

Дети: В верхнем ряду 5 карманов, и в нижнем ряду 5карманов. (То же самое делается и с правой половиной наборного полотна при закрытой левой).

Учитель для большей наглядности вкладывает в кармашки полотна разноцветные палочки. Расставляют 9 красных палочек в верхнем ряду, а 4 зеленых в нижнем.

Учитель: Сколько же палочек всего? Как решить эту задачу?

Дети: Надо к 9 красным палочкам прибавить 4 зеленых.

Учитель: Правильно! Но мы расставили палочки в двух рядах и ни один из них не полон, в обоих рядах остались пустые карманы. Перенесем палочки из одного ряда в другой так, чтобы заполнить один ряд. Как лучше переносить красные палочки вверх к красным? Почему?

Дети: Перенесем 1 зеленую палочку к красным.

Учитель: Сколько палочек тогда окажется в верхнем ряду? Как вы считали?

Дети: К 9 палочкам прибавили 1 палочку – получилось 10 палочек.

Учитель: А сколько всего получилось? Сколько палочек осталось внизу?

Дети: Внизу осталось 3 палочки, вверху – 10. Десяток да 3 единицы, будет 13. К десятку прибавить 3 – получится 13.

Учитель: Как мы решили задачу? Что мы сначала делали? Мы первое слагаемое дополнили до десятка. Сколько мы прибавили к 9, чтобы получить десяток?

Дети: Мы прибавили 1 палочку. К 9 прибавить 1 – получится 10.

Учитель: А дальше как считали?

Дети: Внизу осталось 3 палочки. 10 да 3 – будет 13.

Учитель: Скажите ответ.

Дети: К 9 прибавить 4 – получится 13.

Учитель: Решим теперь обратную задачу. Сколько всего палочек расставлено?

Дети: Расставлено 13 палочек.

Учитель: Из них 4 палочки зеленые. Их мы отдадим Вите. Сколько тогда останется палочек? Кто скажет условие задачи?

Учитель: Было 13 палочек, из них 4 палочки отдали Вите. Сколько палочек осталось?

Учитель: Как будем решать задачу? Нам надо отдать 4 палочки Вите. Будем отдавать ему по одной палочке. Сначала отдадим 3 палочки с нижнего ряда. Сколько теперь осталось на доске? Как это узнать?

Страницы: 1 2 3 4 5 6


Тонкости педагогики:

Развитие словаря детей старшего дошкольного средствами природы
Формирующий эксперимент охватывал учебную и внеучебную формы организации развития словаря детей в процессе ознакомления с природой. Основная цель данного этапа экспериментальной работы: разработать задачи, содержание и методику развития словаря детей в процессе ознакомления с природой. Задачи опытн ...

Методические особенности организации работы с иллюстрационным материалом школьного учебника биологии
На первых этапах изучения биологии целесообразно использовать задания на распознавание объектов и процессов, так как это наиболее простой вид деятельности. Эту работу можно сочетать с обучением умению пользоваться условными обозначениями. Следует учитывать, что в учебниках биологии даны названия из ...

Перспективы развития дошкольного образования в России
Основными документами, задающими целевые ориентиры государственной образовательной политики, являются Концепция модернизации российского образования, Приоритетные направления развития образовательной системы Российской Федерации до 2010 года. Необходимая предпосылка общедоступности качественного об ...

Разделы сайта

Copyright © 2025 - All Rights Reserved - www.eduinterest.ru