Систематический курс геометрии начнем изучать в 7 классе со знакомства с основными свойствами простейших геометрических фигур, которые сформулированы в виде аксиом.
№ 47, стр.23
АС и ВС пересекаются, т.е. точка В лежит в одной полуплоскости, а точка А – в другой (?)
![]() |
Точка А1
(ВС) и лежит между точками В и С
Рассмотрим прямую (АА1), тогда точки А и С принадлежат разным полуплоскостям, т. к. отрезки АС и ВС пересекаются. Поэтому точки В и В1 (т.к. В1 лежит между С и А) лежат в разных полуплоскостях и, следовательно, АА1
ВВ1
При решении используется понятие полуплоскости и аксиома IV (см. страница 8)
После изучения §1 учащимся даются понятия: аксиомы, теоремы, приводятся простейшие формы доказательств. (прочитать пункт 13 «аксиомы», страница 19) № 22 § 2, страница 32
![]() |
Рассмотрим
ДОА. Если
ДОА <
АОВ, то луч ОД лежит между лучами АО и ОВ и, следовательно, пересекает отрезок АВ.
Если
ДОА >
ВОА, то луч ОД пересечет отрезок ВС (это связано
Следующими условиями:
ВОА <
ДОА и луч ОД лежит между лучами ОС и ОВ.
Методика изучения признаков равенства треугольников.
Изложение вопросов о равенстве треугольников во многом зависит от выбора определения равных треугольников. В учебнике Погорелова А.В. приводится гильбертовское определение равенства треугольников, которое требует выполнения шести равенств: трех для соответственных сторон треугольников и трех для соответственных углов этих треугольников. (смотри определение равенства на стр. 14)
Рассмотрим еще один вариант изложения темы равные треугольники:
1. Для равенства двух треугольников потребуем (по определению) равентсов трех соответствующих сторон этих треугольников;
2. В качестве аксиомы примем следующие утверждения: «Если две стороны и угол, заключенный между ними одного треугольника соответственно равны двум сторонам и углу заключенному между ними, другого треугольника, то такие треугольники равны».
Такой подход позволяет не доказывать третий признак равенства треугольников (это предусмотренно в 1.) и I признаках равенства треугольниках (это аксиома), что приводит к сокращению теоретического материала и упрощению логической структуры темы «Равенство треугольников», позволяет кратчайшим путем ввести один из основных методов традиционно-синтетической геометрии – метод равных треугольников.
Методика изучения первого признака равенства треугольников. Методическая схема по Погорелову А.В.:
1. Построить два треугольника, у которых равны две пары соответствующих сторон и углы, заключенные между ними;
Тонкости педагогики:
Дочисловой период формирования количественных представлений у детей
дошкольного возраста
В младшей группе начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей. Со ...
Выявление детей, находящихся в трудной жизненной ситуации
Цель исследования - выявить уровень социальной адаптации детей, разработать основные направления работы с детьми, оказавшимися в трудной жизненной ситуации. В исследовании принимали участие учащиеся 8 класса в количестве 30 человек МБОУ СОШ № 3 г. Бирска. Исследование было проведено в 3 этапа: На I ...
Создание предпосылок для осуществления всеобщего среднего образования
Прежде всего хотелось бы высказать свои соображения по поводу прочно укоренившихся среди многих исследователей мнения, что завершение перехода ко всеобщему среднему образованию впервые было поставлено как задача лишь во второй половине 60-х гг. При этом ссылаются на материалы XXIII съезда КПСС (196 ...