Методическая схема изучения признаков равенства треугольников

Современная педагогика » Начала систематического курса планиметрии в средней школе » Методическая схема изучения признаков равенства треугольников

Страница 1

Систематический курс геометрии начнем изучать в 7 классе со знакомства с основными свойствами простейших геометрических фигур, которые сформулированы в виде аксиом.

№ 47, стр.23

АС и ВС пересекаются, т.е. точка В лежит в одной полуплоскости, а точка А – в другой (?)

Точка В1 (АС) и лежит между точками А и С

Точка А1 (ВС) и лежит между точками В и С

Рассмотрим прямую (АА1), тогда точки А и С принадлежат разным полуплоскостям, т. к. отрезки АС и ВС пересекаются. Поэтому точки В и В1 (т.к. В1 лежит между С и А) лежат в разных полуплоскостях и, следовательно, АА1 ВВ1

При решении используется понятие полуплоскости и аксиома IV (см. страница 8)

После изучения §1 учащимся даются понятия: аксиомы, теоремы, приводятся простейшие формы доказательств. (прочитать пункт 13 «аксиомы», страница 19) № 22 § 2, страница 32

Воспользуемся т. 1.1. (стр.17), согласно которой, из того что пересечена одна из сторон ∆ АВС (СА), прямая пересечет еще одну из оставшихся двух.

Рассмотрим ДОА. Если ДОА < АОВ, то луч ОД лежит между лучами АО и ОВ и, следовательно, пересекает отрезок АВ.

Если ДОА > ВОА, то луч ОД пересечет отрезок ВС (это связано

Следующими условиями: ВОА < ДОА и луч ОД лежит между лучами ОС и ОВ.

Методика изучения признаков равенства треугольников.

Изложение вопросов о равенстве треугольников во многом зависит от выбора определения равных треугольников. В учебнике Погорелова А.В. приводится гильбертовское определение равенства треугольников, которое требует выполнения шести равенств: трех для соответственных сторон треугольников и трех для соответственных углов этих треугольников. (смотри определение равенства на стр. 14)

Рассмотрим еще один вариант изложения темы равные треугольники:

1. Для равенства двух треугольников потребуем (по определению) равентсов трех соответствующих сторон этих треугольников;

2. В качестве аксиомы примем следующие утверждения: «Если две стороны и угол, заключенный между ними одного треугольника соответственно равны двум сторонам и углу заключенному между ними, другого треугольника, то такие треугольники равны».

Такой подход позволяет не доказывать третий признак равенства треугольников (это предусмотренно в 1.) и I признаках равенства треугольниках (это аксиома), что приводит к сокращению теоретического материала и упрощению логической структуры темы «Равенство треугольников», позволяет кратчайшим путем ввести один из основных методов традиционно-синтетической геометрии – метод равных треугольников.

Методика изучения первого признака равенства треугольников. Методическая схема по Погорелову А.В.:

1. Построить два треугольника, у которых равны две пары соответствующих сторон и углы, заключенные между ними;

Страницы: 1 2 3 4


Тонкости педагогики:

Методы развития качеств творческой личности
1. Творческие способности относятся к типу мышления, идущему в различных направлениях от проблемы, отталкиваясь от ее содержания, тогда как типичное для нас направлено на поиск из множества решений единственно верного. Многочисленные тесты измерения интеллекта (IQ), выявляющие скорость и точность н ...

Итегративное обучение младших школьников технологии работы в графическом редакторе Рaint
Одной из актуальных проблем современной начальной школы является организация обучения младших школьников с использованием интегративных связей для обеспечения целостного восприятия окружающей действительности. Знания, приобретаемые детьми на различных учебных предметах, должны пронизываться множест ...

Современные модели концепции содержания образования
Результатом гуманистической направленности образования должно явиться становление как личности человека, способного к сопереживанию, готового к свободному гуманистически ориентированному выбору и индивидуальному интеллектуальному усилию, уважающему себя и других, терпимого к представителям других к ...

Разделы сайта

Copyright © 2025 - All Rights Reserved - www.eduinterest.ru